
AD-AL89 245 AN IN ACE BI/I~I~I~&CE hL A CROI

UNCLASSIFIED F/C 12/3 HL

IIi :1=.o28 12.5
~12

L3 36 -m

iiir iii,- i irI

MICROCOPY RESOLUTION TEST CHART

N. TIWNAL AURE4 U li 1ANDARD -

[AD-.A 189 245 irl
__ MCp

An Interface Betw~een
Object-Oriented Systems

Lawrence A. Crowl

The University of Rochester
Compiter Science Department
Rochester, 'New York 14627

Technical Report 211

April 1987

ELECTE
JAN 15 1988

-Z uZr ,- na f

W* s.

~ ComputR- cene'-

I~I RC-heter New York.I1 47z

DISTMIUTON STATEMETA .-..

- Approved for pblior.1mm "

An Interface Between
Object-Oriented Systems

Lawrence A. Crowl

The University of Rochester

Computer Science Departnient

Rochester, New York 14627

Technical Report 211 r D T IC
April 1987 ELEC-I E .:

A JAN 1 51988

H

Abstract

The description "object-orivied' may apply to both programming languages anu op-
erating systems. Hoev.r. creating an interface between an object-oriented program-
muing language and an object-oriented operating system is not necessarily a straight-
forward task. Chrysalis- - is a C - - interface to the Chrysalis operating system for
the BBN Butterfly Parallel Processor. The development of Chrysalis - - highlights
strengths and weaknesses of C-,- + and the problems of adapting a language, based on
a conventional memory model to a shared memory parallel processor.

This work was supported by United States Army Engineering Topographic Labora-
tories research contract number DACA76-85-C-O001 and National Science Founda-
tion Coordinated Experimental Research grant number DCR-8320136. We thank the
Xerox Corporation University Grants Program for providing equipment used in the
preparation of this paper.

ApprrI-e, f-: r %

SECURITY CLASSIFICATION OF THIS PAGE (Won Dote Entered)7

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS; BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Tr 211
4TITLE (nd Subtitle) S. TYPE OF REPORT & PERIOD COVERED

An Interface Between T c n c l R p rObject-Oriented Systems TcnclRpr

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) B. CONTRACT OR GRANT NUMBER(.)

Lawrence A. Crowl DACA76-85-C-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Computer Science Department AREA & WORK UNIT NUMBERS

University of Rochester
Rochester, NV 14627

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Defense Advanced Research Project Agency April 1987
1400 Wilson Blvd. 13. NUMBER OF PAGES

Arlington, VA 22209 20
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report;

Office of Naval Research Unclassified
Information Systems _______________Arlington, VA 22217

ISs. DECLASSIFICATION DOWNGRADINGArligton VA 2217SCHEDULE

16. DISTRIBUTION STATEMENT (of thl Report)

Distribution of this document is unlimited

17. DISTRI13UTION STATEMENT (of the abotroct entered in Block 20, it different from Rp e e., H11 FI_ ... Y
SNTIS GRA&I fi

object-oriented interface BBN Butterfly P711" TAB

sequential programming language Chrysalis , nc .mc ,i

shared memory oneratina svstpm C++ J,._t:r t. :.j ___

16. SUPPLEMENTARY NOTES

None D t

19. KEY WORDS (Continue on reverse side If necessary and IdentIfy by block number)

OTIC
COPY

20. ABSTRACT (Continue on rever, aide If necessary aid Identify by block numb r)

The description 'object-oriented' may apply to both programming languages
and operating systems. However, creating an interface between an
object-oriented programming language and an object-oriented operating system
is not neccessarily a straight-forward task. Chrysalis + + is a C + +
interface to the Chrysalis operating system for the BBN Butterfly Parallel
Processor. The development of Chrysalis + + highlights strengths and weak-
nesses of C + + and the problems of adapting a language based on a
conventional memory model to a shared memory parallel processor.

OD , JAN. 1473 EDITION OF I NOV GS IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

1 Introduction

: The Chrysalis operating system for the Butterfly Parallel Processor presents an object-
oriented programming environment based on shared memory -BB-N-1985a.BBN 1985b'.
However, because of Chrysalis's low level orientation and its use of type-unsafe features
of the C programming language j'Kernighan and Ritchie 1978;. programs using the environ-
ment are difficult to program and highly error-prone.

Using C as the primary programming language for the Butterfly does not fully realire
the benefit of Chrysalis's object orientation. An object-oriented programnming language
is a natural candidate for improving the Chrysalis environment. The C+ + programming
language [Stroustrup 19861 provides a number of advantages in developing such an interface-.
First, C++ uses C as its object language. Sincs C is available for the Butterfly, less effort
is necessary to implement C+ on the Butterfly than to implement another language from
scratch. Second. C++ is a static language. This allows C++ programs to be comparable in
run-time efficiency with more conventional prograrmming languages. Run-time efficiency is
important, since the reason for using a parallel processor is speed. not convenience. Third.
compatibility with C allows programmers to wlork around any potential inadequacies in
C++. at least relative to what programmers exp,,ct-

This paper reports the successes and problems encountered in the development of Chrys-
alis-,-+ [Crowl 1986'. a C+- interface to Chrysalis The development of Chrysalis-- un-
covered many strengths and weaknesses in C-- -. Sonic apply to C- - in general. others
apply only to its adaptation to a parallel programming environment. It is important to
note that C- + is a sequential language: its use in a parallel programning environment is
therefore outside the bounds of its design. .,-

1.1 C++ Language Overview

The C++ programming language is a (mostly compatible) superset of the C programming
language. It is statically typed and object-oriented. This subsection is an overview of
the most important features, that exist in C++. but not in the C language. Refer to

[Stroustrup 19861 for a more complete description.

C++ encapsulates data within objects. Each object is an instance of a class. The class
statically defines the component variables and types of each instance. It also defines the
member functions and operations that may be performed on instances of the class. The
expression o.f (a) invokes the member function f of the object o with the argument a.

C++ provides single inheritance. The programmer may derive new classes from existing
base classes. The derived class inherits the variables and operations of the base class. The
programmer defines which variables and operations of the class may be used outside of the
definition of the class.

Creation of instances of a class automatically invokes a member function called a con-
structor, and deletion automatically invokes a member function called a destructor. Since
creation and deletion are integral parts of declaring a variable, these functions allow explicit

programmer control over all phases of an object's lifetime. For example, in defining a class
T, the member function definition

I

T int i){/* ... */

defines a constructor for class T taking a single integer argument. The definition

T x(i);

declares a variable x containing1 instances of class T and calls the constructor for the class

passing the integer argument i.

C-- provides a mechanism for generic classes based on C preprocessor macros. The

generic class is defined as a macro that takes the parameter class as an argument. The
instantiation of a generic class results in a specific class declaration. Programmers then use

objects defined with this specific class declaration. Basing the generic class mechanism on
the C preprocessor causes several problems.2 which leads to the conclusion that the C+ +

compiler should implement generic classes directly.

The new and delete operators create and destroy objects in "free store- without ex-
plicit object size calculations., replacing calls to malloc() and free(). These operators

automatically call the constructors and destructors for the appropriate type. For example.
the following declares a pointer to an instance of class T and initializes it to point to a new

instance of T in free store.

T *p = new T(i);

C++ provides inline function expansion. This capability allows one to write highly

modular code without sacrificing performance using called functions or semantics using

preprocessor macros.3

C-- provides for default parameters. For instance, the function definition

int func(int a, int b = 3) { /*/ }

indicates a default second parameter and interprets

func(8); as func(8, 3);

The standard C operators (+. -. *=. etc.) and programmer-defined function names may

be overloaded. Overloaded operators and names are distinguished by argument type. This
allows more concise. notationally convenient program code.

The type casting facility may also be overloaded. This allows the programmer to in-
troduce procedures to explicitly reform data, as opposed to just re-interpreting the repre-
sentations. For instance, the programmer may define a procedure that accepts an instance

'In contrast to Smalltalk and CLU, C++ variables are not references to objects, but contain objects as
values.

2 The generic macros have greater restrictions on spacing in the source code because they construct

identifiers. In addition, one cannot use the // comment form in multiline generics because the preprocessor
concatenates lines into a single line before the C++ compiler sees them. Therefore, everything after the first
//in the macro is commented out.

Functions pass parameters by value, macros pass parameters by name.

2

of a class and returns an integer and have the procedure executed when the cast (int) is
applied to an instance of the class.

In addition to standard C pointers. C+ + has references. References are defined by the
prefix use of the k operator. The programmer does not indicate explicit dereferencing. the
compiler dereferences as appropriate. For example.

void func(int a) { a += 2; } with { int c; funC(c))

passes c "by reference".

1.2 The Butterfly and Chrysalis

The Butterfly contains up to 256 processor nodes interconnected by an O(nlogn) switch-
ing network Each node contains a Motorola 68000 microprocessor. up to 4 megabytes
of memory. and a microcoded processor node controller (PNC). The PNC provides ad-
dress translation, transparent access to remote memory using the switching network, and
microcode support for process scheduling, block memory copy and atomic operationi's

The Chrysalis operating system is very low level. It has no file system. but does provide
access to a host system to load programs and read and write sequential files.

Chrysalis provides support for heavyweight processes compiled as separate programs.
Each process exists on exactly one processor for the lifetime of the process. By convettion.
the code and activation stack reside on the same node as the process. The data often resides
on a different processor. Process startup is expensive, but the process context switch time
is small.

Chrysalis refers to every system object. including processes. with a unique 32-bit object
identifier (0I0). An object may own other objects. By default, the process object that
creates an object owns that object. When an object is deleted (or a process terminates).
any objects it owns are also deleted.

Chrysalis allocates each processor nodte's local memory into a number of memory objects.
Operations exist to create, delete. map arid unmap a memory object. The map operation
places any memory object on the system into the 24-bit virtual address space of the process
performing the map. Delete operation, on mniemory objects are delayed until no process has
the memory mapped in.

Chrysalis provides microcode support for several atomir operations. These inchide
atomic update operations on 16-bit integers and atomic queueing operations for 32-bit
values. The atomic integer operations take up to six times as long as equivalent no-atomic
operations.

1.3 The Problem

The Chrysalis design allows explicit programmer control over system operations. The inter-
face provided for Chrysalis uses the C programming language. This environment requires
the user to write a substantial amount of code that relies heavily on the explicit use of point-
ers, size calculations and type casting, which in turn severely reduces (the already minimal)

3

compiler type checking. As a result, the programming process is error-prone. Since most
programming mistakes on the Butterfly manifest themselves as "bus errors-. tracking down
these mistakes can be extremely time consuming.

Programming under Chrysalis is also cumbersome. For instance, Chrysalis processes
require as much as a hundred lines of user code to start. Process startup code involves
building two records (most of the fields are given default values), and calling up to five
procedures. The atomic queue mechanism requires the programmer to allocate the queue
buffer space before creating the queue itself. Each queue operation takes two paramneters
which are almost always given default values. However, the programmers must remember
to provide them.

Because of the difficulty in writing C programs that use Chrysalis, programmers tend to
avoid it. Efforts to improve the Butterfly's programming environment include the program-
ming languages Lisp [Steinberg et al. 1986, Lynx [Scott 1987.Scott 1986 and Modula-2
[Olsoi 19861, and the library packages NET tHinkelman 1986', SMP [LeBlanc et al. 19861.
and the Uniform System [BBN 1985c;. With the exception of Modula-2. these efforts all
provide a model of computation different from tho Chrysalis operating system. Chrys-
alis++ represents another effort to hide the complexity of the Chrysalis environment, this
time using object-oriented programming in C4 i-. In contrast to the earlier efforts. Chrys-
alis-,- + provides the same model of computation and mechanisms as Chrysalis. In addition.
Chrysalis-- is nearly as efficient as the bare Chrysalis and C mechanism.

1.4 The Solution

The goal of Chrysalis - + is to provide a much simpler and safer interface to Chrysalis than
that provided by C. It achieves this goal by using the object-oriented features of C-,--+.
drastically reducing the coding interface between the user and the system. Chrysalis++ is
not an attempt to build a "new" system and implement it on Chrysalis.

The constraints on the development of Chrysalis++ were to avoid modifying the C-t- +
compiler (and hence the language) and to avoid modifying the Chrysalis operating system.
The C++ runtime support was modified in the process of porting it from Unix to Chrysalis.4

Chrysalis++ is not a full replacement for the standard Chrysalis and C environment. It
provides only those features that are commonly needed at the user level. If the Chrysalis+ -
mechanisms prove inadequate for certain high-performance applications, programmers may
use the basic Chrysalis operations directly. More importantly. programmers may define
new mechanisms to provide the needed function. This approach maintains the benefits and
improves the functionality of Chrysalis++.

The automatic calling of class constructors and destructors in C+ -± provides a powerful
mechanism for insuring proper creation and destruction of data objects. Since the princi-
pal difficulty in the Chrysalis environment is creation. access, and-destruction of Chrysalis
objects, defining C++ classes to control access to Chrysalis objects creates a better pro-
gramming environment. It greatly reduces the amount of coding required by the user and

4 This was an interesting experience in its own right, primarily because Chrysalis functions are not
identical to their Unix counterparts.

4

simultaneously increases the likelihood of correct code at run time because programmers
cannot improperly create or access Chrysalis objects. In addition, using C++ classes to
control access to Chrysalis objects binds access to an object to the lifetime of the variable
used to represent it. This binding represents a conceptual cleanliness because users do not
have to keep track of whether or not a variable references a valid object: it always refers to
a valid object.

Casting explicit Chrysalis object management into into implicit C+- 4- object manage-
ment provides the Chrysalis - + programming environment with a single object nianageent
strategy. This strategy is successful in reducing user code to manage various types of Chrys-
alis objects from between six and a hundred lines of largely type-unsafe C code to a single
line of type-safe C++ code.

2 Typed References to System Objects

Chrysalis provides no direct process-to-process communication facility. Running processes
communicate by passing each other object references (OlDs). Each process then interacts
with the object referenced. There are two problems with DIDs. First. they are identical to
integers under the C system of structural type equivalence. Therefore. programmers may
only maintain OID identity by convention. Second. GIDs carry no type information. The
substitution of an 01D referencing an object of one type for an 0ID referencinlg all object of
another type is a difficult error to track down.

Chrysalis+- does not use DIDs directly because C++ also considers 0IDs an d integers
to be equivalent types.5 As a result. any classes that create or access Chrysalis objects
cannot overload functions based on the distinction between an 0ID and an integer. Since
this capacity is desirable. a new class, called handle, serves as the means of referencing
Chrysalis objects. This class is distinguishable from integers. 6

Chrysalis processes are compiled separately, so there is no opportunity to ensure con-
sistent use of data types between processes with the C++ typing mechanism. Instead.
Chrysalis++ provides a run time solution. Since 0IDs and handles are too small to contain
type information, there is the potential for a handle for a class of one type to be interpreted

as a handle for a class of another type in a different process. Chrysalis"- - solves this prob-
lem by hashing the type name of an object into a byte code and then tagging the code with
the object when it is created. A constructor setting up access to such an object will check

the expected type code of the object against the actual type code stored with the object.

There are some drawbacks to this mechanism. First. the hashing mechanism may map
two different type names to the same code. although the probability is low. Second. type

hashing is not fully compatible with the C++ type scheme because it is based on the type
name. For instance, a typedef from one type to another will generate different codes even
though they are the same type under C++. Third, spacing problems occur with the type

' This is based on the notion of a "typedef' as an alias for a previous type. Its presence in C++ is

necessary for compatibility with C.
4 A type cast operation between handles and OlM allows Chrysiis++ code to use the Chrysalis functions

that take OIDs.

NOU

hashing mechanism because the C preprocessor is used to convert the type name into a
C++ manipulable string. Ideally the program needs access to the compiler's notion of
type identity in order to be fully compatible with the C++ type scheme and avoid the
preprocessor. When fully integrated into the compiler, the type hashing scheme can be
effective [Scott and Finkel 1984]>

3 Processes

Butterfly programs consist of many processes. The program developmient environment
considers each type of process to be a 'program' in the Unix or C sense. Programs start
with the execution of a single 'parent' process as defined in a load image file. This process
then creates the remaining 'child' processes.

Most operating systems provide a mechanism for killing an errant program by killing
the process associated with the program. On the Butterfly. there are potentially hundreds
of processes in any given programn. so killing each process manually is extremely tedious.
Chrysalis solves this problem by allowing the parent process to retain ownership over child
processes. When the user kills the parent process. the system will delete (kill) all the child
processes and memory objects the parent owns. Termination of a process is the same as
deletion. so programmers nmust explicitly wait on the completion of child processes in order
to prevent the parenlt's teriiiination from prematurely killing its children.

3.1 Single Processes

Chrysalis++ represents all system objects with C-, -~ class variables. In the case of pro-
cesses. these are represented by -process variables*. Ini keeping with the policy of linking
object and variable lifetimes, a program should not leave the scope of a process variable
until that process finishes. So. each process declared as a static or local variable is an
owned. or child, process. The creator process will automatically wait on completion of
the child process before exiting the scope enclosing the process variable. However, process
variables allocated out of free store (i.e. with the new operator) have no scope associated
with them. As a consequence. process variables created in free store represent disowned. or
independent, processes which will continue to execute after the creating process completes.
The ability of a C+t+ class to determine its allocation makes this possible. The user may
explicitly wait for completion of a process in free store by applying the delete operator to
it.7

Processes under Chrysalis-+ require five parameters for creation: the file name of the
program to execute as a process. the argc/argv parameters to the process. the processor
upon which to execute the process, and the number of address mapping registers allocated
to the process.8 The last two parameters have default values which C + + will provide if the
programmer does not. This reduces the burden on programmers with simple needs.

7 Other mnechanisms exist to abort a process prematurely.
8The address mapping registers are a critical resource on the Butterfly, aud generally must be programmer

specified.

6

Processes may obtain arguments through either an argc/argv mechanism (similar to the
Unix/C argc/argv mechanism) or through the system's global name server. The initial im-
plementation of process creation in Chrysalis++ required passing explicit argc/argv values
It soon became clear that a much simpler argument mechanism would satisfy the majority
of processes. The final implementation also allows a single argument string that the process
constructor parses into the appropriate argc/argv values much as the command shell parses
program arguments. The forms are distinguished using the overloading features of C-

Since programs pass many object handles through the argc/argv nechanism. Chrys-
alis+-- provides type casts between handles and character strings to aid in convenient
passing of handles through this mechanism. This facility is critically dependent on the
C++ ability to define programmer implemented type casts.

3.2 Multiple Processes

Since programs usually start processes in groups of the same kind. a niechanisin for creat-
ing multiple processes aids the programmer considerably. Programmers generally allocate
processes within a group to different processors to balance the computational load. This
subsection discusses three approaches to implementing multiple processes: process arrays.
process pointer arrays. and a multiple process class. The first two approaches do not work.
Chrysalis- - adopts the third approach.

Process Arrays

The first approach to multiple processes is to allocate an array of processes. This is what
naturally comes to mind when considering a set of processes of the same type. Unfortu-
nately. this approach has two severe problems.

The first problem is that. using C++. one can allocate an array of class instances only
when the class has a constructor taking no arguments. However. constructors for processes
require at least the name of the program to execute. Certainly. one should be able to specify
the parameters for constructors when allocating an array of class instances. Even constant
parameters would be better than none at all. A more useful mechanism would allow passing
the index value to the constructor for each element within the array.

The second problem is that the number of elements in local arrays is determined at
compile time. This would restrict process arrays to a fixed number of processes. This is
unacceptable for many programs where the number ot processes is matched to the number
of processors available at run time. C++ should support determining the number of ele-
ments in a local (i.e. automatic) array upon allocation'. This would require the compiler to
implement a level of indirection transparent to the user.9

' The preferable place to allocate such arrays is on the stack. However, using C as a target language will
not permit this, so the compiler must generate code to explicitly allocate and free the space for the array
using malloc() and fre.O.

7

Process Pointer Arrays

The second approach to managing multiple processes is to have the programmer construct a
process group using an array of pointers to processes allocated out of free store. In the case
of a single process. Chrysalis-- -+ defines process variables allocated out of free store to be
disowned (i.e. independent) processes. If the programmer maintains pointers to processes.
the parent process would exit independently of the completion of the child processes unless
the user specifically waited for the completion of each of the child processes. Also. if the
user kills the parent process while soin of these disowned processes are running. the system
will not automatically delete them. The user would have to kill each process manually. In
addition, the amount of user code required for this solution is unacceptable.

3.3 Multiple Process Class

The third approach has a class that represents nmultiple child processes with a single class
instance. Chrysalis-- -, adopts this approach. The class uses the same free store distinction
in determining child process ownership as used in the single process class. The constructor
the class automatically allocates the requested number of the child processes. The destrue-
tor waits for the completion of each child process. This approach has a side benefit of
increasing the efficiency of creating multiple processes because the implementation does
some operations only once instead of once for each process.

4 Shared Objects

Processes create and share ineiory objects. The creation of memory objects in Chrysalis
is a four step process consisting of determining object size in bytes. creating the memory
object (which takes the size and returns the DID of the object). mapping the object into
the process's address space (which takes the DID and returns a pointer to the memory).
and initializing the mneniory object. The size computation and initialization often take a
user parameter to size the object dynamically. Processes access existing memory objects by
obtaining the DINs and mapping the associated objects into the their address space.

Programs generally cannot have all memory objects they reference mapped in at all
times because the hardware address mapping registers are a scarce resource. Since the
mapping operation is too expensive to perform for each use of the memory object. automatic
management of the mapping registers is a non-trivial task. Programmers must explicitly
manage the duration over which the object is mapped in.

The treatment of memory objects shared among many processes is the heart of Chrys-
alis++. These memory objects are most naturally represented as the sharing of instances
of user-defined classes. The development of shared objects defined the critical concepts in
Chrysalis+ +.

However, to use the class mechanism. the program must distinguish between creation of
a new object and access to an existing object. Chrysals++ achieves the distinction between
these two operations by overloading the constructor operation. When the first parameter

8

to a variable constructor is an object handle. the variable represents access to the existing
object referenced by the handle. Otherwise. the constructor represents creation of a new
object.

4.1 Controlling Initialization

The main problem with shared objects lies not in distinguishing between the two construc-
tors. but in controlling invocation of the user's object initialization code and in integrating
system-supplied addresses into the object nechanism. This problem arises becalse C- -

has no notion of an object entering (or leaving) an address space. All C-t-+ objects live and
die within the program's address space.

Three failed approaches to controlling initialization were a new object allocator, a base
class for shared object. and deriving shared objects from user classes. The approach adopted
is a class that acts as a pointer to shared objects.

Another Allocator

The most obvious approach to shared objects is to have a variant of the new operator that
allocates a memory object instead of going to malloc (). This approach has three problems.

The first problem is that one must redefine the new operator for all uses or none. There
is no mechanism for indicating which new operator to use. Sincc- Chrysalis-- programs

must still use the norrnial fre store allocation. Chrysalis-- could not redefine the allocation
to work for shared ohject: The' C--- language should provide a mechanism for multiple

storage allocators.

The second problemn with this ;Lipprach is that memory objects are usually dynamically

sized to meet specific prograrmi needs. However. C-- classes are statically sized. Any
solution forcing static siziTig is unaIcceptable. This problem can be solved with the concept

of an open class. An open class is one in which the last component is an array whose number
of elements is not bound until allocation. Open structures are simulated in C by defining
a structure with a one element array as its last component and then requesting the space

appropriate to the number of elements actually needed from malloc (.

Computing the number of elements needed in the tail array of an open class is best

left to the class itself. This in turn requires the ability to do some computation in the
constructor before the actual allocation of space. Of course, one cannot use variables of the
class instance in this computation. In conjunction with the multiple allocator assignment.
size precomputation in the constructor implies passing the allocator as a parameter.

The third problem is that shared objects have no scope associated with them since they
use the free store mechanism. This means the distinction between owned and disowned
objects cannot be made on this basis.

Shared Base Class

The second approach derives the user's class from a system provided base class that performs
the Chrysalis memory object operations. Unfortunately, the storage space for the instance

is allocated before the base class constructor has a chance to indicate where it should be
allocated. The derived class can indicate where the instance is to be placed. but not the
base class.

An additional problem is that the language always calls the user's constructor for the
derived class to initialize the object instance. The user's constructor must make the dis-
tinction between creation and access to an existing object. This is not something the user
should have to code.

Shared Derived Class

Since the major problem with the shared base class approach was that the derived class is
called first. the third approach derives the shared class from the user's class and intercepts
the allocation mechanism. Unfortunately. this only allows statically sized instances because
the implementation places derived class data storage immediately above base class data
storage. The C programming trick of allocating more space than a structure calls for and
just using the space beyond the declared bound of the structure will not work. Since many
of the objects shared under Chrysalis are dynamically sized, this was unacceptable.

This method forces all objects to be allocated with the new operator because static and
local (automatic) variables cannot sensibly modify their addresses. This in turn implie.
that Chrysalis-- cannot use the free store distinction to control ownership of the object.

Again. the user's constructor will be called at all tines and it must make the distinctiot,
between creation and access to an existing object.

Shared Class as a Pointer

The problem with the previous two approaches was the automatic calling of the constructor.
So. the fourth and final approach uses a class containing a pointer to the shared object.
Since the constructor for the referent of a pointer is not automatically called. the sharing
mechanism can call the constructor explicitly when desired.

This allows calling a user defined function to determnine the size of the object. and then
request the appropriate space from Chrysalis. Unfortunately, there is no mechanism for
indicating at what address the instance is to be initialized. 10 The ability to specify where
an object is to be created would also be useful for device drivers that have input and output
registers at specific addresses. The solution to these problems is to require the user's class
to provide a size () member function to compute the amount of space needed and a init)
member function to initialize the instance. The constructor is not called.

The shared class as pointer approach allows the use of the free store distinction in
determining object ownership.

Chrysalis++ overloads the unary prefix * operator to allow the shared class to look like
a pointer. Dereferencing the shared class is signaled with a prefix * just as it is in C. In
standard C, the expression *(a) .b is equivalent to a->b. However, in C++ the definition of

10 One can pass a pointer to the constructor and have the object initialize itself at that location. This

method requires the cooperation of the class in handling explicit pointer operations.

10

an overloaded unary prefix * operator does not also allow the overloaded use of the binary
infix -> operator. Thus, only the former notation is allowed.

4.2 Generic Shared Class

Each shared user class requires a different *pointer class'. Since the code to lmplement this
class is precisely the code that is difficult to get right, programmers do not want to code
it for each shared class. This problem is solved by taking advantage of the generic class

mechanism described in 'Stroustrup 1986. pages 209 2101.

The drawback is that the definition of generic classes generally implies that the pro-
grammer knows the parameters of the base class functions. For instance, to allow dynamic
sizing of shared objects. Chrysalis-- - must have a parameter to the sizeO) and init()
member functions. However. not all shared objects will actually use the parameter. A more
general approach would allow generic functions with an unspecified number of arguments
that will in turn be passed to the appropriate parameter class functions. The programmer
need not assume. for instance, that the parameter class constructor takes a single integer
argument. This is the assumption made in the definition of the shared generic class-

4.3 Delayed Delete

Deletion of Chrysalis memory objects is delayed until no process has the object mapped

into its address space. The system cannot invoke the user's destructor for a shared object
because another process may have the object mapped into its address space. The other
process will continue to use the memory with its now invalid data structure. Because of
these delayed delete semantics, the user's shared class destructor will never be called. This
is an instance of a non-object-oriented result arising from creating an interface between
an object-oriented programning language and an object-oriented operating system. This
highlights a fundamental question concerning the meaning of shared objects in a parallel
programming environment. When does a delete take effect?

5 Atomic Integers

Chrysalis provides one atomic integer operation. called clear- Then-add or c Ta. which takes
three parameters. a pointer to a 16-bit word. a 16-bit mask and a 16-bit value. The operation
clears the bits in the word corresponding to the bit set in the mask. then adds the value
into the word. This operation has degenerate forms for the operations and. inclusive or.
and add.

Under Chrysalis, the atomic operation is a special function that users may invoke on
any memory word. there is no notion of an 'atomic' variable. Non-atomic operators may
be applied directly to variables intended to be used in an atomic fashion.

Chrysalis+ + uses the C + + class definition and operator overloading facilities to force all
operations on variables intended to be atomic to be atomic. All non-assignment operators
are atomic in the sense that they atomically read the value. Assignment operators that

11

are atomic are =. +=. &= and I= . The standard C++ assignment operators that cannot be

atomic are *,/ /. "= , <<= and >>=. These operations are not defined for atomic integers
and will generate a compile-time error if used. Note that while individual operations are
atomic. combinati')ns of these operations are not atomic. Atomic operations also work only
on short integers.

The Chrysalis functions return the old value of the word. This capability is vital in
implementing test and set. array index allocation, and other atomic operations. Since the
C assignment operators return the new value, the equivalent atomic assignment operators
could not return the old value. Otherwise. the semantics of the atomic assignment opera-
tions would be counter-intuitive. The result is a set of member functions on atomic variables
(addo. subo. ando. ioro) and cTa()) that return the old values.

The original plan was to derive the atomic short integer class from the short integers.
However. since primitive C-+ types, such as short integer. are not classes, they cannot
serve as the base for derived classes. This is unfortunate, since inany of the operations
are the same. However. since the semantics are simple a class definition from scratch is
reasonably short. Atomic integer class definition uses inline functions and is as efficient as
the Chrysalis mechanism.

C--+ does not distinguish between prefix and postfix use of an overloaded ++ or --
operator. This means that use of these operators would be restricted to one action or the
other. but not both. Rather than provide a definition whtere one use provides unexpected
results, both uses are illegal in Chrysalis+ -. This is not a serious problem because there
are simple equivalent syntactic forms.

6 Atomic Queues

Chrysalis supports atomic queue operations on 32-bit values, usually integers or object
handles. These queues buffer values enqueued or handles of processes waiting to dequeue
a value. Chrysalis supports two forms of enqueue and dequeue. The waiting form causes
the process to wait for successful completion: the polling form attempts the operation and
returns an indication of success.

Under Chrysalis. the programmer must explicitly allocate the queue buffer memory
before creating the queue itself. The Chrysalis--- form of the atomic queues wraps the
queue buffer allocation into the creation of the queue itself.

The initial queue approach provided a separate queue type for each of the primary
types of enqueued values: integers and object handles. This forces users to abandon type
checking with explicit casting when enqueuing objects of different types. The solution
implements queues as a generic class taking the type of the element to be enqueued as
an argument. The Chrysali-+ + generic queue mechanism will accept no class larger than
32 bits because of the Chrysalis limit of 32 bits on queue values. Because of the internal
implementation. overloading the address of (k) or assignment (=) operators of the parameter
class will produce unpredictable results.

A queue is potentially shared by many processes. so it should have the same delete
semantics as shared objects. That is, delete the queue when the last user relinquishes

12

access as opposed to when the original creator relinquishes access. Unfortunately. the run-
time cost to implement this under Chrysalis is substantial, so it was not done. Memory
objects and queues have different delete semantics. Object-oriented systems should carefully
consider object managemenit semantics and apply them uniformly.

7 Conclusions

Overall, tile use of C- to crcat(art interface to Chrysalis is a success. However. this

success was not as complete as hoped. primarily because C+-- has no notion of an object
entering an address space intact. It will need such a notion to be fully integrated into any
system that shares memory but does not share a uniform virtual addre.s space.

Several features of C- - helped in the development of Chrysalis -

* Classes provided a clear organizational tool.

* The automatic invocation of constructors and destructors was the one feature that

contributed most to user code reduction. The constructors handle the system object

creation mechanism and the destructors automatically cleans up

* The ability to distinguish free store allocation of objects fromn other uses enabled the,

owned/disowned object distinction to be expressed concisely. The lifetime of systen

objects is equivalent to the lifetime of the variables used to represent them.

* Overloaded operations and function names kept the linguistic cost of manipulating

objects low. Progranimers do not have to remember a different set of operators for

atomic integers as opposted to normal integers.

* User-defined cast operations allowed convenient value conversions. A re-interpretation
of the representation would not have been appropriate in many cases. For instance.
casting from an object handle to a character string requires the allocation and ini-
tialization of a string This is something that would not have been possible without
user-defined casts.

* The C+- default parameter mechanism allows the programmer to ignore those pa-
rameters for which the default is acceptable. Chrysalis uses default values a great

deal. This is especially helpful for those features that must be specified on sufficient
occasions to warrant inclusion in the interface, but are not necessary for simpler cases.

e Ialine functions permit abstract operations to be implemented efficiently. Some opera-
tions would have been too expensive to abstract if a procedure call was necessary. For

example, the atomic integer and queue operations would have been far too expensive
if encased in a called procedure.

e Generic classes reduced programmer coding of direct, and error-prone. interactions

with Chrysalis. This allows the system to provide the specific mechanisms for a given
class automatically.

13

The C- + inheritance mechanism was of helped little in the development of Chrysalis+-.
Inheritance from primitive types would have increased its utility, but not enough to have
a major influence, However, the marginal utility of inheritance in Chrysalis+-i is not an
indictment of the C --r inheritance mechanism. Chrysalis- + had few 'sinilar' types upon
which to build.

Several wealesses in C- - hindered the deveopment of Chrysalis++.

* The lack of parameters to constructors for arrays of classes prevented the natural
construction of process arrays. This defect applies to sequential programs as well.

" Allocation of arrays at scope entry prevents the most efficient solutions to dynamic
data needs. This restriction prevents a natural and convenient dynamic allocation of
child processes.

The notion that primitive types are not classes prevents inheriting their operations.
This increased the definition cost of sonie classes, but overall is not a major problem.

* The preprocessor based generic mechanism causes special non-intuitive. spacing re-
strictions in the source code. This affects the programmers syntax in using generic
classes.

" C-- operator overloading does not distinguish between the prefix and postfix fornis
of increment and decrement. This precludes use of a notation that C programmers
find comfortable and convenient. For instance, the user cannot use these operators
with atomic integers.

• The C-,-t handling of constructors does not allow initializing objects at known loca-
tions. This lack affected the definition of shared object.. Such a capability is outsid,
the domain of C+-.-.

" The lack of open classes prevents using safe C- - constructs when allocating dynami"
data. This represents more of a problem in C- than it does in C becaisv '- -
provides such clean facilities for allocating data of known size.

" C- - does not recognize a->b as an abbreviation for * (a) b This affects the syntact ic
use of shared objects.

" The lack of program access to the C+ - notion of type prevents insuring accurate type
compatibility between processes. This too is outside the domain of C- +.

The C++ programming language's compatibility with C is both a blessing and a curse
It is a blessing because it achieves wider acceptance. greater portability and an easier
transition from non-object-oriented languages. It is a curse because dubious syntactic forms
in C are magnified in C++ and the language is larger and more complex than its function
dictates.

Creating an interface between object-oriented systems is not necessarily a straightfor-
ward task. Subtle differences in object creation. access and deletion semantics between the
two systems become major inconsistencies at the interface. The object semantics for C-,--

14

and Chrysalis are both reasonable. but their combination in Chrysalisi- is less than clean
An object-oriented system for parallel programming requires careful consideration of object
semantics and lifetimes.

15

References

[BBN 1985a' Butterfly Parallel Processor Overvieu version 1. BBN Laboratories. Cam-
bridge. Massachusetts. June 1985.

[BBN 1985b Chrysalis Programmer s Manual. version 2.2. BBN Laboratories. Cambridge.
Massachusetts. June 1985

(BBN 1985c' The Uniform System Approach To Programming the Butterfly Parallel Pro-
cessor. version 1. BBN Laboratories. Cambridge. Massachusetts. October 1985.

(Crowl 1986, Lawrence A. Crowl. -Chrysalis-++. Butterfly Project Report 15. University
of Rochester. Computer Science Department. December 1986.

[Hinkelman 1986' Elizabeth A. Hinkelman. -NET: A Utility for Building Regular Pro-
cess Networks on the BBN Butterfly Parallel Processor-. Butterfly Project Report 5.
University of Rochester. Computer Science Department. December 1986

Kernighan and Ritchit' 1978 Brian W. Kernighan and Dennis M. Ritchie. The C Pro-
gramming Language. Prentice-Hall. 1978.

'LeBlanc et al. 1986 Thoinas .J. LeBlanc. Neal M (after and Takahide Ohkanmi. "'SMl A
Message-Based Programiing Envirounitt for the BBN Butterfly". Butterfly Project
Report 8. University of Rochester. Compuiter Scie'ce Department. July 1986

Olson 1986' Thomas J. Olson. -Modula-2 on the BBN Butterfly Parallel Processor-. But-
terfly Project Report 4. University of Rochester. Computer Science Departintit. Jan-
uary 1986.

Scott 1986' Michael L. Scott. -LYNX Reference Manual". Butterfly Project Report 7.
University of Rochester. Computer Science Department. March 1986.

Scott 1987 Michael L. Scott. -Language Support for Loosely-Coupled Distributed Pro-
grams". IEEE Transactions on Software Engineering. SE-13(1):88 103. January 1987

'Scott and Finkel 1984 Michael L Scott and Raphael A. Finkel. -A Simple Mechanism
for Type Security Across Compilation Units-. Technical Report 541. University of
Wisconsin Madison. Department of Computer Sciences. May 1984. A later version
will appear in the IEEE Transactions on Software Engineering,

[Steinberg et al. 19861 Seth Steinberg. Don Allen. Laura Bagnall and Curtis Scott. -The
Butterfly Lisp System-. Proceedings of the 1986 AAAL pages 730 734. Philidelphia.
Pennsylvania. August 1986

[Stroustrup 1986 Bjarne Stroustrup. The C- + Programming Language. Addison-Wesley
Publishing Company. Reading. Massachusetts. 1986.

10

A Chrysalis++ Example

This program illustrates many features of Chrysalis-+. Its core is a shared stack of integers
that synchronizes access by multiple processes. This class allows instances to have different
maximum sizes it is an open class as discussed earlier.

The file "stack h" defines the stack class. The file -stackc" implements the stack opera-
tions that are not perfornied inline. The file -pusher.c" implements a proces. that pushes 10
values on the stack. The file "poppcr.c" implements a process that pops 10 values from the
stack. The file -niaster.c' creatcs a stack and starts up a number of prsher- ant popper:

The corresponding C code using Chrysalis takes at least twice the anunt of code. ani
is far less readable. More importantly. the C code has more' opportunity for bugs.

17

stack.h

class stack
{

atomic-short lock // true while locked for busy waiting
int limit, top. storage[1) // will allocate >1 slot

public:
int size(int num) // passed number of slots

{ // will execute inline
return s'zeof(lock) + sizeof(limit) + sizeof(top)

+ mum * sizeof(int) // size of storage array
}

void init(int num) // passed number of slots
f // will execute inline
limit = mum - 1 ; // limit of indices

top -1 // initially no entries
lock = FALSE • initially busy lock is not locked
}

stack(int nun) // this is the constructor
{ // will execute inline

if (this 1= 0)
bfCC-error("Stack must be 'new'd.", 0. "". 1)

else
{

int nchars = ((stack *)O)->size(nun) • // call size
this = (stack *) new (nchars] char
this->init(mum) // initialize
}

}

boolean is-empty() // will execute inline
{ return top < 0 } // zero points to first entry

boolean is-full() // will execute inline
{ return top >= limit } // limit points to lest entry

boolean push(element &item) // these will execte out of line
boolean pop(element &item) . and return TRUE if they fail

4eclare2(shared.stack.int) / parameters to size and init are into
I/ macro to instantiate concrete class from generic class

18

stack.c

#include "chrysalis+* h"

#include "stack h"

boolean stack :push(int &item) // stack member function push

{ // item is a reference to an int

while (lock ior(TRUE)) ; // busy wait while locked
// lock ior returns old value and sets to new value

if (is-full()) // check stack for full
{

lock = FALSE I unlock
return TRUE I failure
}

storage[-+top] = item ; // adjust top and insert element

lock = FALSE ; unlock

return FALSE I successful
}

boolean stack::pop(int &item.) I stack member function pop

(// item is a reference to an int

while (lock.ior(TRUE)) ; // busy wait while locked

if (is-empty()) // check stack for empty
{

lock = FALSE // unlock

return TRUE I failure
}

item = storage[top--] I remove element and adjust top

lock = FALSE /I unlock

return FALSE I successful
}

pusher.x

*include "chrysalis+- h"

#include "stack h"

void main(int argc, char **argv)
{

// setup access to stack given string form of handle

shared(stack) global-stack(handle(argv[1J))

for (int i = 1 , i <= 10 ' i)

while ((*global-stack).push(pnn)) // push the processor

duration(0 001) wait() I node number until it succeeds
}

19

popper.c

#include "chrysalis++.h"

#include "stack.h"

void main(int argc. char **argv)
{

// setup access to stack given string form of handle

shared(stack) global-stack(handle(argv[1))
int item '
for (int i = 1 ; i <= 10 ; i-+)

while ((*global-stack).pop(item)) // item passed by reference

duration(0.001).wait() // pop until it succeeds

II pusher's processor number is now in the variable item
}

master.c

#include "chrysalis++.h"

#include "stack h"

void main(int argc, char **argv
{

// node generator to spread processes around

node-generator nodes(0) ;

/! zreate stack for 300 elements

shared(stack) global-stack(nodes.next(), 300)

// save the string form of its handle to pass to pushers and poppers

char *argument = (char *) handle(global-stack);

// the program's first argument is the number of pushers and poppers

int number = atoi(argv[1])
// start pushers and poppers.

processes pushers("pusher", argument, nodes, number)
processes popers("poper". argument, nodes, number)

} // implicitly wait for pushers and popper before leaving scope

20

F

IATE

M E

